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LE'ITER TO THE EDITOR 

On the distribution of the effective field for a spin glass on a 
Cayley tree at zero temperature 

Walter F Wreszinski 
lnstituto de Fisica, Universidade de Sao Paulo, SaoPaulo, Brazil 

Received 20 September 1989 

Abstract. An ansatz for the probability distribution of the effective field for a spin glass 
on a Cayley tree at zero temperature is proposed. The continuous part of the distribution 
is not differentiable at the origin, in contrast to an ansatz by Katsura and in qualitative 
agreement with numerical results of de Oliveira. Possible implications are discussed. 

The model of a spin glass on a Cayley tree [l-81 is an attractive alternative to the 
Sherrington- Kirkpatrick model [9]. Indeed, the model's local behaviour is identical 
to the Bethe approximation, its solution does not involve replicas and it is not plagued 
by the negative entropy problem of [9]. In addition, and unlike the Sherrington- 
Kirkpatrick model, it allows for an extensive study of boundary conditions [6-81. 
Although the phase diagram has been studied in some detail [7] several problems 
remain in the low-temperature region. 

In this letter, we deal with the distribution of the effective field [2] at zero 
temperature, a subject of active current interest [8,10]. The characteristic function 
(Fourier transform) of this distribution satisfies a nonlinear integral equation (equation 
( 5 ) )  first written down by Katsura [3]. His ansatz for the continuous part of the solution 
is in the form of a Fourier (spherical) Bessel series [3]. We propose a different ansatz 
obtained by solving the equation iteratively, starting from Katsura's first approximation. 
As a consequence, and in contrast to Katsura's ansatz, the solution is a positive linear 
combination of other characteristic functions, the latter being generated by the process 
of iteration itself. We now turn to some of the details. 

Consider Ising spins on a Cayley tree of coordination number z and suitable 
boundary conditions (e.g. spins at the boundary equal to +1[2]). The nearest-neighbour 
exchange couplings JIJ are taken to be independent random variables with common 
probability distribution P ( J v )  = [S(J, + 1) + S ( J i j  - 1)]/2. In the limit of an infinite 
Cayley tree the probability distribution p (  h )  of the effective field h [2] at a particular 
internal site is connected to the probability distributions p(hk) of the effective fields 
hkr k = 1, .  . . , z - 1, on that site due to the ( 2  - 1) sites of the next generation by the 
equation 
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with 

p ( h )  = p ( - h )  
m I_” dh = 1 

and where, at zero temperature [2-41, 

f ( x )  = sgn(x) min(lx1,l). 

Introducing the characteristic function 
W 

4 ( x ) = l _ W d h p ( h ) e x p ( i x h )  

it follows from ( l ) ,  (3) and (4) that 4 satisfies the integral equation 

(4) 

where A is the nonlinear integral operator defined by 

sin ( y - x )  
Y - X  

4 (Y)2 .  
sin y 

( A ~ ) ( x )  = COS x -- 

This equation should be solved with the constraint that 4 is a characteristic function, 
i.e. a function of the form (4) with p satisfying (2) and allowed to be the sum of a 
linear combination of delta functions at a countable set of points and a continuous 
function. This is only a special case of the general definition (see, e.g., [ l l ] ) ,  where 
p is just required to be the derivative of an absolutely continuous ‘distribution function’ 
which is, in general, only defined almost everywhere and hence is not necessarily 
continuous [ 11, section 1.31. In addition, a Cantor-like ‘singular continuous part’ [ 11, 
section 1.31 could be added (corresponding to p equal to zero almost everywhere). 
Although our ansatz below (as well as previous ones) only involves this special case, 
other solutions (in particular, a singular continuous one) cannot be ruled out a priori. 

The first question which poses itself is whether a solution of (5) exists and is unique: 
Both questions are answered by exhibiting two solutions: 

4 ( x )  = 1 ( 7 )  

(fJ(x)=f+$cosx. (8)  
Solution (7) corresponds to p ( h )  = 6 ( h )  and is therefore the paramagnetic solution; 
solution (8) is of the spin-glass type [3]. de Oliveira [4] sought solutions to (1) of the 
form 

with a,, =a- , , .  We obtained the set {a,} numerically for several values of N and 
thereby found an infinite number of solutions of (1). He also found that the a, for 
n # 0, n # N, n # - N  vanish when N + 00, in such a way that the product Nan 
approaches a non-zero constant. Defining p , ( h )  = limN+W Nu,,, n = Nh, for n # 0, 
n # N, n # - N ,  he showed numerically that 

A h )  = p d ( h ) + P c ( h )  ( loa> 
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where 

p d ( h )  = a s ( h ) +  b[S(h - l )+S(h  + 111 ( lob) 

with a = 0.106 83, b = 0.218 42, and pc continuously differentiable everywhere except 
at h = +1, h = -1  and h =0, with 

lim pe(  h )  = 70.0143. 
h+O+ 

Unfortunately, de Oliveira’s solution (9) does not suggest an analytical form of p 
because the a, vary with N, as well as the points n/ N ( n  = - N ,  . . . , N). Katsura [3] 
proposed an ansatz of the form 

4 K  (x )  = 4 K d  + 4Kc(X) (1 la)  

(bKd(X) = a + b COS X ( I lb )  

where 

and 

with the same a and b as de Oliveira’s ansatz, and { c ~ ~ } , = ~ , ~ , , , .  coefficients to be 
determined; the first two are co = 0.456 31 and c2 = 0.057 59. Above, j , ,  are spherical 
Bessel functions and none of them are characteristic functions, except j ,  = (sin x)/x. 
Indeed, j , , ,  I 3  1 are all zero at the origin, contradicting (212) and (4). We therefore 
set as first approximation (the upper index denoting the order of approximation) 

and attempt to solve ( 5 )  iteratively upon requiring that, at each order, the coefficients 
of those characteristic functions which occur at both the right- and left-hand sides of 
( 5 )  be equal. Hence, in order to find 4:) we must compute A4:’. By (6), this means 
that we must calculate Zx(4?’), where 

for all x, including x = 0, which also occurs in the definition (6) of A. From (12) and 
(13), I X ( 4 )  (with 4 = 4;’)  is a convergent (but not absolutely convergent) Riemann 
integral which may be computed explicitly as a sum of Cauchy principal values by 
the residue theorem. In this way, we obtain 

- sin x 
( A ~ ? ) ) ( X )  = 6 + f i  COS x + A -+ p&(x)  

X 

where 

(1-cosx) 
X 2  

#4X) = 2 

is the characteristic function of the triangular distribution 
- 1 a h s 1  
otherwise 
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which has, of course, a discontinuous derivative at the origin, and 

6 = a:+p:/2 (16a) 

P=1-a:-P:/2-2A,al-A,Pl-3A:/4 (166) 

~ = 2 A l a l + A l ~ , + A ~ / 2  ( 1 6 ~ )  

( 1 6 4  2 p = A l .  

The previously defined iterative process requires now in first order that 6 = a , ,  P = P1 , 
and i = A , ,  whereby (16a)-( 16c) becomes a system of equations for a,, P ,  and A l .  
Their solution was found numerically to be 

CY, = 0.161 521 39 P I  = 0.525 2014 A ,O.288 7418. (17)  

Setting A ,  = 0 in (16a) and (166) we get two equations which, together with the 
normalisation condition aI + P I  = 1 ,  yield the two solutions (7) and (8). In order to 
find +h2) we must compute I x ( A 4 t ) )  starting from (13) and (14). The result is 
I x ( A t ’ )  = (6  +p2/2) + ( 1  - &2-p2/2 -21; -1P-3X2/4) COS x 

sin x 
+ ( 2 i 6  + i P + i 2 / 2 + B p  +p2/3)  - 

X 

and 

We see that 4,  is a characteristic function, as a product of two characteristic functions. 
The Fourier transfrom p 2  of 42 may be calculated by contour integration: 

[: if h Q -1 .  

i f h a 1  
p2( h )  = 1 + ( I  h i -  2)h2 if - 1  6 h s 1 (21) 

Equation (21) shows explicitly that p 2  satisfies (2) and therefore 42 is a characteristic 
function. Further, p 2  has a parabolic behaviour near the origin, which is present in 
the probability distributions of both [3] and [4]. Putting (18) into the RHS of (6) we 
find A(A4b”) and, as before, equating the coefficients of those characteristic functions 
present in both A(A4A‘)) and 114:” we find 

where { a 2 ,  p2,  A 2 ,  p2} satisfy a simultaneous system of nonlinear algebraic equations 
which we do not write down, but the solution of which is found to be 

a2=0.150 IO51 

AZ=0.315 8904 

/32 = 0.505 1209 

p2 = 0.022 6283. 
(3) 

By (18), A$L2’ is of type ( a 3 + ~ 3 ~ ~ ~ ~ + A 3 ( s i n x ) / x + p 3 4 T ( ~ ) + ~ 3 4 1 ( ~ ) + ~ 3 ~ 2 ( ~ ) )  
and, although new functions 4 3 ( ~ ) r . .  . , might (and almost certainly will) apppear in 
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A(A4L2)), again only the coefficients in {a3, p3 ,  h 3 ,  p3v3, w3} ,  common to both A4L2' 
and A(A4L2') will be determined in third order. In this way we obtain a sequence 4:' 
of approximations. 

We see from the above that each 4r' is associated with a sequence of positive 
coefficients {a,, P,, A,, . . .} of characteristic functions. We expect that 4b"' converges, 
as n + 00, to a characteristic function &. Since each &"' is a linear combination of 
characteristic functions with positive coefficients, the limit will be a characteristic 
function if it is a convex combination, i.e. if the sequence of coefficients converges, 
a, + a, Pn + p, A, + A , .  . . , such that a + p + A +. . . = 1 (notice that this normalisation 
was not required a prion'). Moreover, the corresponding Fourier transform is manifestly 
non-negative (property (2a)).  This is in contrast to 4Kc given by ( l l c ) :  the Fourier 
transforms of the j ,  are Legendre polynomials PI which except for the first Po= 1 are 
not everywhere positive; nevertheless, EE0 C2,P2 , (x )  2 0 for -1 S x S 1 because CZI << 
CO for I #  0. 

In order to verify whether {4b"'>n=,,2,... tends to converge, we compare E(,,)= 
a, + Pn + A ,  + p, +. . . for successive values of n. By (17), &,) = 0.979 157, and, by (23), 

= 0.993 7446, so that it seems that we are going in the right direction. Due to the 
considerable increase in labour involved to obtain the next approximation, we shall 
leave a study of &"I, n 2 3, to a further publication. Note, however, that, although 
(17) and (23) show an evolution towards the coefficients found by de Oliveira (and 
the first three found by Katsura), comparison with (23) shows that convergence is slow. 

We now summarise our conclusions. Because p2 # 0 in (23), the probability distribu- 
tion associated with our characteristic function is not differentiable at the origin. In 
fact, by (1Oc) and (23) the predicted discontinuity in the derivative is of the order of 
magnitude of the one found in reference [4]. Since Fourier transforms of spherical 
Bessel functions are Legendre polynomials and the coefficients Cz, in (1 1 c)  seem to 
decay rapidly with increasing 1 [3], the probability distribution associated with Kat- 
sura's ansatz for the continuous part of the characteristic function does not have a 
discontinuous derivative at the origin and, therefore, our characteristic function is 
different from Katsura's. Hence, there exist at least two solutions with non-zero 
continuous component. This seems to be of greater interest than the already mentioned 
existence of an infinity of discrete solutions because, as proved in [lo], the solution 
with continuous component (Katsura's) is longitudinally stable, while the discrete ones 
are not. 

Several open problems remain. We expect that the present solution is also longi- 
tudinally stable, which may be verified by the methods of [lo]. However, in order to 
find out which solution has the lowest energy a better control of the behaviour of 
higher-order coefficients (in both solutions) will be necessary before an unmistakable 
answer can be provided. In particular, a proof of summability of both sequences of 
coefficients would render the present (as well as Katsura's) results rigorous. 

We are very grateful to M J de Oliveira for helpful discussions and aid in obtaining 
the numerical results, and to CNPq for partial support. 
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